Suchen

Neuer Katalysator Ende der Platin-Ära? Forscher entwickeln sehr reinen Fe-N-C-Katalysator

| Redakteur: M.A. Manja Wühr

Brennstoffzellen werden als Säule der Energiewende gehandelt. Das Problem dabei: Bislang arbeiten sie mit teuren Platinkatalysatoren, die bis zu 25 Prozent der Kosten einer Brennstoffzelle ausmachen. Forscher zeigen nun, dass es auch mit in Graphen eingebetteten Eisen-Stickstoff-Komplexen geht.

Firmen zum Thema

Nanoinsel aus Graphen, in die Eisen-Stickstoff-Komplexe eingelagert sind. Katalytisch wirksam sind FeN4-Komplexe (orange markiert).
Nanoinsel aus Graphen, in die Eisen-Stickstoff-Komplexe eingelagert sind. Katalytisch wirksam sind FeN4-Komplexe (orange markiert).
(Bild: S. Fiechter/HZB)

Berlin – Fe-N-C-Katalysatoren können in puncto katalytische Wirkung locker mit platinbasierte Katalysatoren mithalten. Doch anorganische Verbindungen wie Eisencarbide oder Nitride hemmen den Wirkungsgrad. Forscher des Helmholtz Zentrum Berlin konnten nun gemeinsam mit der TU Darmstadt sehr reine Fe-N-C-Katalysatoren herstellen.

„Bereits vor einigen Jahren haben wir am HZB ein neues Präparationsverfahren entwickelt, bei dem aus metall-organischen Verbindungen (z.B. Eisen- oder Kobaltporphyrine) diese preiswerten Katalysatoren hergestellt werden“, berichtet Peter Bogdanoff, HZB. Ulrike Kramm und Iris Herrmann-Geppert hatten das Herstellungsverfahren im Rahmen ihrer Doktorarbeiten am HZB weiter optimiert. Die besten der am HZB entwickelten Metall-N-C-Katalysatoren hielten etwa bis 2011 den Weltrekord hinsichtlich der Dichte katalytisch aktiver Zentren. Unklar blieb jedoch, ob anorganische Verbindungen die katalytische Wirkung beeinflussen. Dies konnte das Team nun aufklären.

Reinigungsverfahren eliminiert störende Verbindungen

Der Clou in der aktuellen Arbeit ist ein Reinigungsverfahren, das universell für diese Katalysatoren eingesetzt werden kann. Es ist eine Kombination aus thermischer Behandlung mit anschließendem Ätzschritt. Damit kann der Anteil an störenden Metallverbindungen auch bei ursprünglich sehr heterogen zusammengesetzten Metall-N-C-Katalysatoren nachträglich deutlich reduziert werden. Interessant ist hierbei, dass parallel die Aktivität enorm ansteigt. Ulrike Kramm, inzwischen Juniorprofessorin an der TU Darmstadt, gelang es, einige Katalysatoren so zu reinigen, dass sämtliches Eisen ausschließlich in der komplexierten Form aus Eisen und vier Stickstoffatomen (FeN4) in den Graphenebenen vorliegt.

"Dieses Reinigungsverfahren ermöglicht es uns nun, Katalysatoren mit ausschließlich FeN4-Zentren zu erzeugen, so dass wir ganz gezielt untersuchen können, inwieweit bestimmte Verbindungen als Promotoren die Aktivität oder Stabilität verbessern“, fasst Ulrike Kramm ihren Forschungsansatz an der TU Darmstadt zusammen.

Komplett regenerativ arbeitender Energiekreislauf

„Um diese These zu überprüfen, haben wir eine Vielzahl von komplexen Methoden zur Strukturforschung eingesetzt, wie Mößbauer-Spektroskopie, Elektronenspinresonanz-spektroskopie und die Röntgenabsorptionsspektroskopie bei BESSY II. Damit konnten wir die Zusammensetzung der Katalysatoren genau vermessen“, berichtet Ulrike Kramm. In ihren Untersuchungen konnten die Wissenschaftlerinnen und Wissenschaftler die in Fachkreisen diskutierte These widerlegen, nach der z.B. Eisennanopartikel die Aktivität von FeN4-Zentren als sogenannte Promotoren verbessern.

Sebastian Fiechter und Peter Bogdanoff setzen am HZB ihre Forschungen an neuartigen Katalysatoren fort: „Die Einsichten in die Wirkungsweise dieser Metall-N-C-Katalysatoren können wir auch für die Entwicklung von Katalysatormaterialien für die solare Wasserstoffproduktion nutzen, die wir am HZB vorantreiben“, sagt Fiechter. Koppelt man die Forschungsaktivitäten am HZB und der TU Darmstadt wäre es möglich einen komplett regenerativ arbeitenden Energiekreislauf darzustellen, in dem der solar erzeugte Wasserstoff emissionsfrei in kostengünstigen Brennstoffzellen umgesetzt würde.

Dieser Beitrag ist urheberrechtlich geschützt. Sie wollen ihn für Ihre Zwecke verwenden? Kontaktieren Sie uns über: support.vogel.de (ID: 43840324)