Grüner Wasserstoff BMBF will Effizienz und Zuverlässigkeit von Elektrolyseananlagen steigern

Quelle: Pressemitteilung Universität Bayreuth 3 min Lesedauer

Anbieter zum Thema

Das Bundesministerium für Forschung und Bildung (BMBF) fördert ein deutsch-kanadisches Verbundprojekt um grünen Wasserstoff effizienter zu produzieren. Das Vorhaben ist auf drei Jahre angesetzt. Geforscht wird am Zentrum für Energietechnik (ZET) der Universität Bayreuth. 

Deutsch-kanadische Forschungskooperation: Mariam Awara von Pulsenics, Matthias Welzl vom Zentrum für Energietechnik der Universität Bayreuth und Dr.-Ing. Stephan Wagner von Segula Technologies (v.l.n.r.) bei der f-cell 2022 in Stuttgart.(Bild:  Segula Technologies)
Deutsch-kanadische Forschungskooperation: Mariam Awara von Pulsenics, Matthias Welzl vom Zentrum für Energietechnik der Universität Bayreuth und Dr.-Ing. Stephan Wagner von Segula Technologies (v.l.n.r.) bei der f-cell 2022 in Stuttgart.
(Bild: Segula Technologies)

Grüner Wasserstoff hat in zukünftigen Energiesystemen eine Schlüsselfunktion bei der Dekarbonisierung und der Kopplung aller Sektoren. Die Europäische Union hat sich daher das Ziel gesetzt, bis 2030 in den eigenen Mitgliedsländern zehn Millionen Tonnen grünen Wasserstoff zu produzieren und weitere zehn Millionen Tonnen zu importieren. Besonders geeignet zur Produktion von grünem Wasserstoff im großen Maßstab sind Elektrolyseanlagen, deren Funktionsweise auf der Protonen-Austausch-Membran (PEM) basiert. Diese PEM-Elektrolyseanlagen werden bereits im Megawatt-Maßstab kommerziell eingesetzt. Sie bieten schnelle Reaktionszeiten und können sehr flexibel betrieben werden.

Fehlende Langzeit-Betriebserfahrungen

Dadurch kann die stark fluktuierende Stromerzeugung aus nachhaltigen Energiequellen wie Sonne oder Wind direkt mit PEM-Elektrolyseanlagen gekoppelt werden. Diese große Dynamik kann jedoch dazu führen, dass die zu Stacks zusammengefassten Elektrolysezellen vorzeitig altern. Infolgedessen verringern sich auch die Lebensdauer und die Leistung der Anlage insgesamt. Bisher ist es nicht möglich, diese Prozesse im industriellen Maßstab abhängig von der Betriebsweise vorherzusagen: Die an der Elektrolyse beteiligten Vorgänge sind komplex und die Langzeit-Betriebserfahrungen gering.

Genau hier setzt das vom BMBF geförderte deutsch-kanadischen Verbundprojekt „Modellentwicklung zur Steigerung der Effizienz von Elektrolyseanlagen“ (kurz: „Hyer“) an. Dem Verbundprojekt gehören einem deutschen Industriepartner und vier kanadischen Partnern aus Industrie und Wissenschaft an. Gemeinsam wollen die Forschungspartner ein digitales techno-ökonomisches Modell einer PEM-Elektrolyseanlage entwickeln, die mit erneuerbaren Energiesystemen gekoppelt ist und sich durch eine dynamische Betriebsweise auszeichnet.

Unser Ziel ist es, einen guten Kompromiss zwischen einer langen Lebensdauer und einer hohen Flexibilität der Elektrolyseanlage zu finden. 

Prof. Dr.-Ing. Dieter Brüggemann, Direktor des ZET


Digitaler Zwilling erleichtert Vorhersagen

 In Verbindung mit Hard- und Softwareanwendungen wird dieses Modell es ermöglichen, Alterungsvorgänge und die Verringerung der Leistungsfähigkeit mit hoher Genauigkeit vorherzusagen. Dadurch können Betriebsstrategien unter Berücksichtigung der Lebensdauer optimiert werden. Das angestrebte Modell wird dazu auch den digitalen Zwilling eines Stacks umfassen, der die nachteiligen Folgen einer dynamischen Betriebsweise für die Elektrolysezellen präzise abbildet

An der Entwicklung des digitalen Zwillings werden Forschende des Institute for Integrated Energy Systems an der University of Victoria und des National Research Council Canada (NRC) mit Methoden der künstlichen Intelligenz und des maschinellen Lernens arbeiten. Die zur Modellierung notwendigen experimentellen Daten werden vom Hydrogen Research Institute der Université du Québec à Trois-Rivières bereitgestellt, das in Zusammenarbeit mit dem NRC neuartige Stacks herstellt, analysiert und charakterisiert. Diese Stacks werden in einem speziell für das Projekt „Hyer“ entwickelten Prüfstand bei Segula Technologies in Rüsselsheim getestet und beschleunigt gealtert. Für die elektrochemische Charakterisierung der Stacks wird das in Toronto ansässige Start-up Pulsenics Inc. die erforderlichen technischen Lösungen liefern.

Unter  der Leitung von Prof. Dr.-Ing. Dieter Brüggemann, Direktor des ZET, übernimmt das Bayreuther Team die techno-ökonomische Simulation und Optimierung der PEM-Elektrolyseanlage. Matthias Welzl, der als Koordinator für Wasserstoffforschung und -technologien das Projekt am ZET wesentlich vorbereitet hat, übernimmt die Koordination der deutschen Projektpartner. 

Jetzt Newsletter abonnieren

Verpassen Sie nicht unsere besten Inhalte

Mit Klick auf „Newsletter abonnieren“ erkläre ich mich mit der Verarbeitung und Nutzung meiner Daten gemäß Einwilligungserklärung (bitte aufklappen für Details) einverstanden und akzeptiere die Nutzungsbedingungen. Weitere Informationen finde ich in unserer Datenschutzerklärung. Die Einwilligungserklärung bezieht sich u. a. auf die Zusendung von redaktionellen Newslettern per E-Mail und auf den Datenabgleich zu Marketingzwecken mit ausgewählten Werbepartnern (z. B. LinkedIn, Google, Meta).

Aufklappen für Details zu Ihrer Einwilligung