Fossile Rohstoffe prägen noch immer die Chemieindustrie. Weltweit wird erforscht, wie man ohne sie auskommt. Deshalb rücken Plattformchemikalien aus erneuerbaren Quellen in den Fokus. Spezielle Katalysatoren spielen dabei eine Schlüsselrolle.
Die neue Reaktion läuft in einem einzigen Schritt ab, statt wie bisher in fünf bis sechs Stufen.
Fossile Rohstoffe dominieren noch immer die chemische Industrie. Doch weltweit erforschen Labore, auf welchem Wege Großprozesse künftig auf Erdöl, Erdgas und Kohle verzichten können. Dabei gewinnen sogenannte Plattformchemikalien an Bedeutung, sie entstehen komplett aus erneuerbaren Rohstoffen. Ihre Verwendung in industriellen Prozessen benötigt besondere Katalysatoren. Einen solchen Katalysator stellt ein Forscherteam am Likat, in Kooperation mit dem Dalian Institut für chemische Physik, soeben im Fachmagazin Nature Communications vor. Er gestattet in einem einzigen Reaktionsschritt die Umsetzung der Plattformchemikalie Furfural zu Aminen, die zu den wichtigsten Synthesebausteinen zählen.
Amine sind funktionale Bestandteile in der Synthese von Medikamenten und Agrochemikalien, sie werden in vielen Bereichen, etwa Energietechnik und Materialwissenschaften, massenhaft verwendet. Letztlich führen sie in die chemischen Prozesse jene Stickstoffeinheiten ein, die für spezifische Eigenschaften in den Produkten sorgen. Der Amin-Markt wächst stark, Schätzungen sagen für die nächsten zehn Jahre Wachstumsraten von jährlich acht Prozent voraus.
Reaktion ohne Ab- und Nebenprodukte
Das reizte Haifeng Qi aus Dalian, sich in seiner Dissertation näher mit dieser Reaktion zu befassen. „Denn die Amin-Synthese ist noch immer weitgehend von fossilen Ressourcen abhängig“, wie er sagt. Dabei steigt weltweit das Interesse an kostengünstigen Methoden für ihre nachhaltige Fertigung auf der Basis erneuerbarer Rohstoffe, erläutert Dr. Kathrin Junge, in deren Arbeitsgruppe Dr. Haifeng Qi gegenwärtig als Humboldt-Stipendiat am Likat, dem Leibniz-Institut für Katalyse in Rostock, arbeitet.
Die neue Reaktion läuft in einem einzigen Schritt ab, statt wie bisher in fünf bis sechs Stufen. Haifeng Qi verwendet dafür die Plattformchemikalie Furfural, die vollständig aus Bioabfällen produziert wird, sowie Ammoniak und Wasserstoff. Daraus entsteht das Amin Piperidin, ein Zwischenprodukt u.a. für Arznei-, Pflanzenschutz- und Lösungsmittel.
Als Modellreaktion ist dieser Prozess universell nutzbar. „Wenn man z.B. das Produkt Piperidin weiter erhitzt und gleichzeitig die Zufuhr von Wasserstoff und Ammoniak abschaltet, entsteht ein weiteres Amin namens Pyridin“, berichtet Dr. Haifeng Qi über seine Forschung. Beide Male setzte er seine Ausgangsstoffe vollständig um, es entstanden keinerlei Abprodukte.
Das heißt auch, dass man sich nach diesen Prozessen die übliche Reinigung der Amine sparen kann, wie Dr. Junge sagt. „Auch lässt sich der Katalysator problemlos für neue Zyklen wiederverwenden.“ Wie hochselektiv er die Reaktion steuert, zeigt die Ausbeute, die bis zu 97 % beträgt. Im Grunde ein sensationeller Wert.
Wie schafft der Katalysator das? Dr. Haifeng Qi schmunzelt, als er die Frage hört, denn genau die stellte auch er sich, als er dessen hochselektive Vorgehensweise erkannte. Deshalb wurde der Katalysator im Analyse-Bereich des Likat präzise untersucht.
Haifeng Qi hatte seinen Katalysator aus Kobalt und Ruthenium präpariert, und zwar in der für die heterogene Katalyse üblichen Art und Weise: Er löste Salze der beiden Metalle in Wasser auf, gab ein Trägermaterial dazu, an dem sich das Metall absetzen konnte, ließ dann das Lösungsmittel verdampfen und den Komplex trocknen. Anschließend setzte Haifeng Qi seinen Katalysator einer Hitze von 400°C aus. Chemiker nennen diesen Vorgang Pyrolyse: das Material verbrennt nicht, sondern ändert seine Struktur.
Einzelne Atome bewirken den Effekt
Wie entscheidend die Hitze die Katalysatorstruktur verändert hatte, zeigte sich später unter den Hightech-Mikroskopen. Kathrin Junge erläutert: „Gruppen von Kobalt-Atomen fanden sich in Nanopartikeln zusammen, an deren Oberfläche sich das Ruthenium lagerte, und zwar in Form einzelner Atome.“ Haifeng Qi: „Genau diese einatomige Struktur, wie wir sie nennen, machte den Effekt. Und sie ist ziemlich stabil.“ Das alles ermöglicht eine recht einfache Anordnung für diese Amin-Produktion, mit der nach Einschätzung von Dr. Junge jeder Laborant zurechtkomme.
„Ein solcher Stoffkreislauf der Amin-Produktion auf der Basis von Biomasse ist kaum bekannt“, betont Likat-Direktor Prof. Dr. Matthias Beller, der von deutscher Seite die Arbeit Haifeng Qis betreute. Das könnte, wie er sagt, die Basis einer „Bioraffinerie der Zukunft“ sein.
Stand: 08.12.2025
Es ist für uns eine Selbstverständlichkeit, dass wir verantwortungsvoll mit Ihren personenbezogenen Daten umgehen. Sofern wir personenbezogene Daten von Ihnen erheben, verarbeiten wir diese unter Beachtung der geltenden Datenschutzvorschriften. Detaillierte Informationen finden Sie in unserer Datenschutzerklärung.
Einwilligung in die Verwendung von Daten zu Werbezwecken
Ich bin damit einverstanden, dass die Vogel Communications Group GmbH & Co. KG, Max-Planckstr. 7-9, 97082 Würzburg einschließlich aller mit ihr im Sinne der §§ 15 ff. AktG verbundenen Unternehmen (im weiteren: Vogel Communications Group) meine E-Mail-Adresse für die Zusendung von redaktionellen Newslettern nutzt. Auflistungen der jeweils zugehörigen Unternehmen können hier abgerufen werden.
Der Newsletterinhalt erstreckt sich dabei auf Produkte und Dienstleistungen aller zuvor genannten Unternehmen, darunter beispielsweise Fachzeitschriften und Fachbücher, Veranstaltungen und Messen sowie veranstaltungsbezogene Produkte und Dienstleistungen, Print- und Digital-Mediaangebote und Services wie weitere (redaktionelle) Newsletter, Gewinnspiele, Lead-Kampagnen, Marktforschung im Online- und Offline-Bereich, fachspezifische Webportale und E-Learning-Angebote. Wenn auch meine persönliche Telefonnummer erhoben wurde, darf diese für die Unterbreitung von Angeboten der vorgenannten Produkte und Dienstleistungen der vorgenannten Unternehmen und Marktforschung genutzt werden.
Meine Einwilligung umfasst zudem die Verarbeitung meiner E-Mail-Adresse und Telefonnummer für den Datenabgleich zu Marketingzwecken mit ausgewählten Werbepartnern wie z.B. LinkedIN, Google und Meta. Hierfür darf die Vogel Communications Group die genannten Daten gehasht an Werbepartner übermitteln, die diese Daten dann nutzen, um feststellen zu können, ob ich ebenfalls Mitglied auf den besagten Werbepartnerportalen bin. Die Vogel Communications Group nutzt diese Funktion zu Zwecken des Retargeting (Upselling, Crossselling und Kundenbindung), der Generierung von sog. Lookalike Audiences zur Neukundengewinnung und als Ausschlussgrundlage für laufende Werbekampagnen. Weitere Informationen kann ich dem Abschnitt „Datenabgleich zu Marketingzwecken“ in der Datenschutzerklärung entnehmen.
Falls ich im Internet auf Portalen der Vogel Communications Group einschließlich deren mit ihr im Sinne der §§ 15 ff. AktG verbundenen Unternehmen geschützte Inhalte abrufe, muss ich mich mit weiteren Daten für den Zugang zu diesen Inhalten registrieren. Im Gegenzug für diesen gebührenlosen Zugang zu redaktionellen Inhalten dürfen meine Daten im Sinne dieser Einwilligung für die hier genannten Zwecke verwendet werden. Dies gilt nicht für den Datenabgleich zu Marketingzwecken.
Recht auf Widerruf
Mir ist bewusst, dass ich diese Einwilligung jederzeit für die Zukunft widerrufen kann. Durch meinen Widerruf wird die Rechtmäßigkeit der aufgrund meiner Einwilligung bis zum Widerruf erfolgten Verarbeitung nicht berührt. Um meinen Widerruf zu erklären, kann ich als eine Möglichkeit das unter https://contact.vogel.de abrufbare Kontaktformular nutzen. Sofern ich einzelne von mir abonnierte Newsletter nicht mehr erhalten möchte, kann ich darüber hinaus auch den am Ende eines Newsletters eingebundenen Abmeldelink anklicken. Weitere Informationen zu meinem Widerrufsrecht und dessen Ausübung sowie zu den Folgen meines Widerrufs finde ich in der Datenschutzerklärung, Abschnitt Redaktionelle Newsletter.
Originalpublikation: H. Qi, Y. Li, Z. Zhou, Y. Cao, F. Liu, W. Guan, L. Zhang, X. Liu, L. Li, Y. Su, K. Junge, X. Duan, M. Beller, A. Wang, T. Zhang, Nat. Commun. 2023, 14, 6329. „Synthesis of piperidines and pyridine from furfural over a surface single-atom alloy Ru1CoNP catalyst”; DOI: 10.1038/s41467-023-42043-6