Potenzial in der Wirkstoffforschung Kieler Forscher lösen grundlegende Herausforderung in der chemischen Synthese

Quelle: Uni Kiel 2 min Lesedauer

Anbieter zum Thema

Ein Kieler Forschungsteam beschreibt eine Methode, mit der Kohlenstoff-Wasserstoff-Bindungen von Carbonsäuren gezielt in Kohlenstoff-Fluor-Bindungen umgewandelt werden können. Dabei löst ein innovativer Kombinationsansatz fundamentale Herausforderung.

Gut kombiniert: Erstautor Sourjya Mal (links) und Friedrich Jurk (rechts) designten sowohl einen Katalysator als auch ein Oxidationsmittel, um eine Kohlenstoff-Fluor-Bindung gezielt herzustellen.(Bild:  Julia Siekmann/ Uni Kiel)
Gut kombiniert: Erstautor Sourjya Mal (links) und Friedrich Jurk (rechts) designten sowohl einen Katalysator als auch ein Oxidationsmittel, um eine Kohlenstoff-Fluor-Bindung gezielt herzustellen.
(Bild: Julia Siekmann/ Uni Kiel)

Carbonsäuren gehören zu den wichtigsten Substanzklassen der Chemie und sind Bestandteil vieler medizinischer Wirkstoffe wie Aspirin oder Ibuprofen. Um die Eigenschaften von Carbonsäuren maßzuschneidern, können Fluoratome in die Molekülstruktur eingeführt werden. Das erfordert allerdings komplexe, mehrstufige Syntheseverfahren. Ein international zusammengesetztes Forschungsteam am Otto Diels-Institut für Organische Chemie der Christian-Albrechts-Universität zu Kiel (CAU) beschreibt jetzt im Fachmagazin Nature Synthesis erstmals eine Methode zur direkten Einführung von Fluoratomen in aliphatische Carbonsäuren, die den Prozess deutlich vereinfacht und beschleunigt.

Die neue Synthesemethode beruht auf gleich zwei fundamental herausfordernden chemischen Prozessen. Zunächst muss eine üblicherweise unreaktive Kohlenstoff-Wasserstoff-Bindung aktiviert werden, hier durch die Spaltung mit einem Palladium-Katalysator (C–H-Aktivierung). Die Grundlagen für geeignete Katalysatoren haben in den vergangenen Jahren verschiedene internationale Forschungsteams geschaffen, darunter auch der Arbeitskreis um Manuel van Gemmeren, Professor für Organische Chemie an der CAU. Basierend auf diesen Vorarbeiten entwickelten sie in ihrer aktuellen Veröffentlichung neue, besonders effiziente Katalysatoren.

Die zweite zentrale Herausforderung dieser Arbeit war das Knüpfen einer Kohlenstoff-Fluor-Bindung. Für aliphatische Carbonsäuren erwiesen sich etablierte Strategien als ungeeignet. Daher entwickelte das Team um van Gemmeren einen innovativen neuen Ansatz: „Zusätzlich zur Optimierung der Katalysatorstruktur designten wir ein Reagenz, ein sogenanntes Oxidationsmittel, das die Reaktion im entscheidenden Schritt beeinflusst und so die selektive Bildung der Kohlenstoff-Fluor-Bindung ermöglicht“, erläutert Erstautor Sourjya Mal. Weitere Experimente zeigten, dass mittels dieser Reagenzien tatsächlich ein außergewöhnlicher Reaktionspfad beschritten wird. „In dieser Studie konnten wir zeigen, dass das kombinierte Design von Katalysator und Oxidationsmittel Reaktionen ermöglicht, die mit einem einzelnen Ansatz nicht erreicht werden könnten. Dieser Befund ist sicherlich auf weitere hochattraktive Synthesemethoden übertragbar und könnte sich daher als wegweisend erweisen“, so van Gemmeren.

Mit der vorgestellten Methode lassen sich Fluoratome direkt in komplexe Carbonsäure-Moleküle einführen, ohne dass eine aufwendige und langwierige Synthese notwendig wäre. „Aufgrund der Bedeutung, die sowohl Carbonsäuren als auch fluorierten Molekülen in der Pharmaforschung zukommt, sehe ich ein außergewöhnliches Anwendungspotenzial für unsere Methode“, ordnet Professor von Gemmeren die Bedeutung der Arbeit ein. „Ich bin sehr stolz auf das, was meine Mitarbeitenden, insbesondere der Erstautor der Studie, Sourjya Mal, hier erreicht haben.“

Die Entwicklung der neuen Methode ist das Ergebnis langjähriger Vorarbeiten im Rahmen des Emmy-Noether-Programms der Deutschen Forschungsgemeinschaft (DFG).

Originalpublikation: Mal, S., Jurk, F., Hiesinger, K. et al. Pd-catalysed direct β-C(sp3)–H fluorination of aliphatic carboxylic acids. Nat. Synth (2024). https://doi.org/10.1038/s44160-024-00578-6 https://www.nature.com/articles/s44160-024-00578-6

(ID:50076020)

Jetzt Newsletter abonnieren

Verpassen Sie nicht unsere besten Inhalte

Mit Klick auf „Newsletter abonnieren“ erkläre ich mich mit der Verarbeitung und Nutzung meiner Daten gemäß Einwilligungserklärung (bitte aufklappen für Details) einverstanden und akzeptiere die Nutzungsbedingungen. Weitere Informationen finde ich in unserer Datenschutzerklärung. Die Einwilligungserklärung bezieht sich u. a. auf die Zusendung von redaktionellen Newslettern per E-Mail und auf den Datenabgleich zu Marketingzwecken mit ausgewählten Werbepartnern (z. B. LinkedIn, Google, Meta).

Aufklappen für Details zu Ihrer Einwilligung