Ein unerwarteter Durchbruch im Rostocker Likat: Eigentlich sollte ein phosphorbasierter Ligand entwickelt werden, doch die Forschung nahm eine überraschende Wendung. Stattdessen entstand eine neuartige Verbindung, das Triazabutadien, und ein modifizierter Syntheseweg, die „Azid-Wittig-Reaktion“ – eine Variation der berühmten Wittig-Reaktion.
Kushik, Promotionsstudent bei Dr. habil. Christian Hering-Junghans, stieß durch Zufall auf die neue Azid-Wittig Reaktion.
(Bild: Likat/ Gohlke)
Ursprünglich war die Entwicklung eines neuen Liganden geplant, quasi der Hülle eines Katalysators. Konkret sollte in den Arbeitsgruppen von Dr. habil. Christian Hering-Junghans und Prof. Torsten Beweries am Rostocker Likat ein phosphorbasierter Ligand entstehen. Die Synthesen im Rahmen einer Promotion führten jedoch zu einer anderen Substanz als erwartet, nämlich zu einem Triazabutadien. Am Ende erwies sich der Syntheseweg als neue Form eines etablierten chemischen Prozesses: der Wittig-Reaktion, 1979 mit einem Nobelpreis gewürdigt. Die neue Synthese heißt „Azid-Wittig Reaktion“, das Paper erschien in dem Wiley-Journal Angewandte Chemie. Die Arbeit erregt in der Fachwelt einiges Aufsehen.
Noch vor Erscheinen der Printausgabe erlangte die Nachricht der Autoren zu ihrem Paper zehntausend Views und wurde mehrfach im Netz geteilt. Kein Wunder. „Die Wittig-Reaktion ist unter Chemikern bekannt wie ein bunter Hund, daran kommt schon im Studium niemand vorbei“, sagt Dr. Hering-Junghans. Sie ist unverzichtbar, um funktionelle Moleküle mit Doppelbindung zwischen Kohlenstoffatomen (C=C) herzustellen. Das sind „allgegenwärtige Strukturmotive“ der organischen Synthese.
Bildergalerie
Um solche Doppelbindungen ging es auch dem Promovenden: Kushik, einem Chemiker aus Indien, Hauptautor des Papers. Für den neuen Liganden wollte er ursprünglich Phosphor-Kohlenstoff-Doppelbindungen (P=C) in ein Di-Aldehyd einbauen. Kurz ein Exkurs zur Chemie, Klasse 10: Aldehyde sind Moleküle, die eine sog. Aldehydgruppe aus je einem Kohlenstoff-, Wasserstoff- und Sauerstoffatom enthalten. Umfassen Moleküle zwei solcher Gruppen, werden diese als Di-Aldehyd bezeichnet.
Mit seiner Reaktion kam Kushik nicht über den ersten Schritt hinaus. Es wurde immer nur eine Aldehyd-Gruppe in die gewünschte P=C-Bindung umgewandelt. Die andere blieb frei.
Störungen haben Vorrang
Wenn in der Forschung alle Aufmerksamkeit auf ein neues Produkt oder Verfahren gerichtet ist, würde man unter solchen Umständen den Reaktionspfad nicht verlassen. Anders in der Grundlagenforschung. Christian Hering-Junghans, einer von Kushiks Doktorvätern, sagt: „Uns fordern solche Störungen auf, ihre Ursache zu erkunden. Sie können zu fundamentalen Erkenntnissen führen.“ So wurde diese Arbeit zu einem Gemeinschaftsprojekt im Themenfeld von Prof. Dr. Torsten Beweries, „Neue Produkte & Verfahren“. Nach gemeinsamer Beratung wich Kushik von seinem Pfad ab.
Christian Hering-Junghans sah in der freibleibenden Aldehydgruppe z. B. eine Chance, neben der P=C-Doppelbindung auch eine Stickstoff-Kohlenstoff-Doppelbindung (N=C) einzufügen. Dazu nutzte Kushik eine Ableitung der Wittig-Reaktion, und zwar die Aza-Wittig-Reaktion.
Der Plan sah so aus: Ein organisches Azid, zu dessen charakteristischer Struktur drei Stickstoffatome in unterschiedlicher Bindung gehören, und eine Base werden mit dem so hartnäckig freibleibenden Aldehyd zu einer Imin-Einheit umgesetzt, wobei außer dem Einbau der N=C-Doppelbindung auch noch Stickstoff freigesetzt wird.
Das schien zu funktionieren, zumindest deutete die NMR-Spektrometrie den Einbau einer N=C-Doppelbindung an. Als Kushik sein Reaktionsprodukt, orangefarbene Kristalle, zusätzlich im Röntgendiffraktometer überprüfte, zeigte sich Überraschendes. In der Reaktion war statt einer Imin- eine Triazabutadien-Einheit entstanden, was eine völlig andere Substanz ergab. Und zwar auch deshalb, weil gar kein Stickstoff freigesetzt wurde, der verblieb gebunden im Produkt.
Die Frage nach dem Warum war der Startpunkt der Studie, deren spektakuläre Erkenntnisse jetzt veröffentlicht wurden. Die Autoren stellen ausführlich dar, wie sie bei ihrem im Grunde zufälligen Vorgehen die etablierte Aza-Wittig-Reaktion abgewandelt hatten.
Entstanden ist eine neue Reaktion, in der nicht nur das Azid übertragen wurde, sondern die gesamte Moleküleinheit, mit der das Azid verbunden ist. Als Moleküleinheit entschieden sich die Chemiker für eine Gruppe namens Mes*, „eine sehr raumfüllende Gruppe“, wie Christian Hering-Junghans sagt, „sterisch sehr anspruchsvoll“. Durch ihre Größe schützt Mes* das Azid vor der Abspaltung von Stickstoff (N2) und so ging das Azid komplett in das Produkt ein.
Die beteiligten Likat-Chemiker nennen ihren Syntheseweg Azid-Wittig-Reaktion. Erst später erfuhren sie, dass eine solche Reaktion das erste Mal 2019 veröffentlicht wurde. Doch nur als merkwürdiges Resultat, welches nicht weiter systematisch untersucht wurde.
Mit Clickchemie aus der Nische befreit
Über Kushiks Überraschungsprodukt, Triazabutadiene, kurz TBD, wurde 1965 erstmals berichtet. TBDs enthalten Gruppen von Doppelbindungen (N=C, N=N), die untereinander wiederum durch Einfachbindungen verknüpft sind.
Stand: 08.12.2025
Es ist für uns eine Selbstverständlichkeit, dass wir verantwortungsvoll mit Ihren personenbezogenen Daten umgehen. Sofern wir personenbezogene Daten von Ihnen erheben, verarbeiten wir diese unter Beachtung der geltenden Datenschutzvorschriften. Detaillierte Informationen finden Sie in unserer Datenschutzerklärung.
Einwilligung in die Verwendung von Daten zu Werbezwecken
Ich bin damit einverstanden, dass die Vogel Communications Group GmbH & Co. KG, Max-Planckstr. 7-9, 97082 Würzburg einschließlich aller mit ihr im Sinne der §§ 15 ff. AktG verbundenen Unternehmen (im weiteren: Vogel Communications Group) meine E-Mail-Adresse für die Zusendung von redaktionellen Newslettern nutzt. Auflistungen der jeweils zugehörigen Unternehmen können hier abgerufen werden.
Der Newsletterinhalt erstreckt sich dabei auf Produkte und Dienstleistungen aller zuvor genannten Unternehmen, darunter beispielsweise Fachzeitschriften und Fachbücher, Veranstaltungen und Messen sowie veranstaltungsbezogene Produkte und Dienstleistungen, Print- und Digital-Mediaangebote und Services wie weitere (redaktionelle) Newsletter, Gewinnspiele, Lead-Kampagnen, Marktforschung im Online- und Offline-Bereich, fachspezifische Webportale und E-Learning-Angebote. Wenn auch meine persönliche Telefonnummer erhoben wurde, darf diese für die Unterbreitung von Angeboten der vorgenannten Produkte und Dienstleistungen der vorgenannten Unternehmen und Marktforschung genutzt werden.
Meine Einwilligung umfasst zudem die Verarbeitung meiner E-Mail-Adresse und Telefonnummer für den Datenabgleich zu Marketingzwecken mit ausgewählten Werbepartnern wie z.B. LinkedIN, Google und Meta. Hierfür darf die Vogel Communications Group die genannten Daten gehasht an Werbepartner übermitteln, die diese Daten dann nutzen, um feststellen zu können, ob ich ebenfalls Mitglied auf den besagten Werbepartnerportalen bin. Die Vogel Communications Group nutzt diese Funktion zu Zwecken des Retargeting (Upselling, Crossselling und Kundenbindung), der Generierung von sog. Lookalike Audiences zur Neukundengewinnung und als Ausschlussgrundlage für laufende Werbekampagnen. Weitere Informationen kann ich dem Abschnitt „Datenabgleich zu Marketingzwecken“ in der Datenschutzerklärung entnehmen.
Falls ich im Internet auf Portalen der Vogel Communications Group einschließlich deren mit ihr im Sinne der §§ 15 ff. AktG verbundenen Unternehmen geschützte Inhalte abrufe, muss ich mich mit weiteren Daten für den Zugang zu diesen Inhalten registrieren. Im Gegenzug für diesen gebührenlosen Zugang zu redaktionellen Inhalten dürfen meine Daten im Sinne dieser Einwilligung für die hier genannten Zwecke verwendet werden. Dies gilt nicht für den Datenabgleich zu Marketingzwecken.
Recht auf Widerruf
Mir ist bewusst, dass ich diese Einwilligung jederzeit für die Zukunft widerrufen kann. Durch meinen Widerruf wird die Rechtmäßigkeit der aufgrund meiner Einwilligung bis zum Widerruf erfolgten Verarbeitung nicht berührt. Um meinen Widerruf zu erklären, kann ich als eine Möglichkeit das unter https://contact.vogel.de abrufbare Kontaktformular nutzen. Sofern ich einzelne von mir abonnierte Newsletter nicht mehr erhalten möchte, kann ich darüber hinaus auch den am Ende eines Newsletters eingebundenen Abmeldelink anklicken. Weitere Informationen zu meinem Widerrufsrecht und dessen Ausübung sowie zu den Folgen meines Widerrufs finde ich in der Datenschutzerklärung, Abschnitt Redaktionelle Newsletter.
TBDs führten lange Zeit ein Nischendasein. Erst 2005 wurde eine allgemeine Syntheseroute für diese Stoffklasse aufgezeigt. Aus zwei Synthesebausteinen, einem organischen Azid und einem N-Heterocylus, konnten die TBDs förmlich „zusammengeklickt“ werden, etwa so wie Lego-Bausteine. Solche TBDs werden unter physiologischen Bedingungen, also im Organismus, nicht so leicht gespalten, weshalb sie sich etwa in der Medizin zur Markierung von Biomolekülen eignen.
Ein limitierender Faktor in der Anwendung war bisher nach den Worten von Dr. Hering-Junghans der N-Heterozyklus, einer der beiden Synthesebausteine in der Struktur der TBDs: „Er blockiert quasi eine Region, an die nichts anderes mehr andocken kann.“ TBD aus dem Rostocker Labor enthalten diesen N-Heterozyklus nicht mehr, sind also auf vorteilhafte Art abgewandelt. Das öffnet dieser Substanzklasse neue Wege zu vielfältigen Anwendungen. Das Team um Dr. Christian Hering-Junghans und Prof. Torsten Beweries wird die Azid-Wittig-Reaktion selbst nutzen, um neuartige Liganden zu entwickeln. „Wir finden hier etliche Elemente vor, die sich dafür anbieten, z.B. drei Stickstoffatome, die als Haftatome für das Metallzentrum fungieren können.“
Originalpublikation: K. Kushik, A. Petrov, D. Ranieri, L. Edelmann, T. Beweries, C. Hering-Junghans, Angew. Chem. Int. Ed. 2024, e202412982. https://doi.org/10.1002/anie.202412982. The Azide-Wittig Reaction.