Worldwide China Indien

Wasserelektrolyse

Selbstheilende Katalysatoren für die Wasserstoffproduktion

| Redakteur: Tobias Hüser

Auf dem Weg zu einer effizienteren Wasserstoffproduktion: Stefan Barwe, Corina Andronescu, Prof. Wolfgang Schuhmann und Justus Masa (v.l.n.r.).
Auf dem Weg zu einer effizienteren Wasserstoffproduktion: Stefan Barwe, Corina Andronescu, Prof. Wolfgang Schuhmann und Justus Masa (v.l.n.r.). (Bild: RUB, Kramer)

Einen Katalysator mit selbstheilenden Eigenschaften haben Chemiker am Zentrum für Elektrochemie der Ruhr-Universität Bochum entwickelt. Unter den anspruchsvollen Bedingungen der Wasserelektrolyse zwecks Wasserstoffproduktion regeneriert sich das Katalysatormaterial von alleine, solange die dafür notwendigen Bestandteile in der Elektrolytlösung vorliegen.

Bochum – Wasserstoff gilt als Energieträger der Zukunft. Es ist aber eine Herausforderung, stabile und effiziente Katalysatoren für seine Synthese zu finden. Diese erfolgt durch Elektrolyse von Wasser, wobei an einer Elektrode Wasserstoff, an der anderen Sauerstoff entsteht. Die Elektroden sind mit einem Katalysatorfilm überzogen, der im Verlauf der Reaktion angegriffen wird und an Wirkung verliert.

In einer Machbarkeitsstudie zeigten die Bochumer Chemiker einen neuen Weg auf, um einen hochstabilen Katalysatorfilm zu erzeugen. Sie gaben Katalysator-Nanopartikel in Form eines Pulvers zu der Lösung hinzu, die die Elektroden umgibt. Die durch die Elektrodenräume gepumpten Partikel stoßen mit der Elektrodenoberfläche zusammen. Dort bildet sich aufgrund elektrostatischer Anziehungskräfte ein Partikelfilm aus. Dabei scheiden sich Partikel mit positiv geladener Oberfläche auf der Anode und Partikel mit negativ geladener Oberfläche auf der Kathode ab. Der Katalysatorfilm setzt sich also selbstständig zusammen.

Wissen ist Wettbewerbsvorteil Ob Branchennews, innovative Produkte, Bildergalerien oder auch exklusive Videointerviews. Sichern auch Sie sich diesen Informationsvorsprung und abonnieren Sie unseren redaktionellen Branchen-Newsletter „Forschung & Entwicklung in Chemie- und Verfahrenstechnik“.

Durch den gleichen Mechanismus regenerierte sich die Katalysatoroberfläche während der Reaktion. Neue Nanopartikel aus der Lösung wanderten zu den Elektroden und frischten dort den verschleißenden Katalysatorfilm auf. Dieser Selbstheilungseffekt hielt solange an, wie Katalysatorpartikel in der Lösung vorhanden waren.

Stabil für mehrere Tage

Die Forscher arbeiteten mit Nickelelektroden. Sie testeten zwei unterschiedliche Katalysatorpulver für die beiden Elektroden, jeweils ein auf Nickel basierendes Material und ein auf Cobalt basierendes. Alle Katalysatormaterialien bildeten einen wenige Mikrometer dicken Film auf den Elektroden, wie elektronenmikroskopische Aufnahmen bestätigten. Die Messungen ergaben außerdem, dass sich funktionstüchtige Systeme bildeten, die stabil über mehrere Tage Wasserstoff produzierten. In weiteren Studien wollen die Chemiker nun den Einfluss von Partikelform und -größe sowie den Einfluss der Elektrolytlösung auf die Effizienz und Stabilität der Katalysatoren genauer untersuchen.

Die Deutsche Forschungsgemeinschaft unterstützte die Arbeiten im Rahmen des Exzellenzclusters Resolv. Weitere Förderung kam vom Bundesministerium für Bildung und Forschung im Rahmen des Projekts „Mangan“

Kommentare werden geladen....

Kommentar zu diesem Artikel abgeben

Der Kommentar wird durch einen Redakteur geprüft und in Kürze freigeschaltet.

  1. Avatar
    Avatar
    Bearbeitet von am
    Bearbeitet von am
    1. Avatar
      Avatar
      Bearbeitet von am
      Bearbeitet von am

Kommentare werden geladen....

Kommentar melden

Melden Sie diesen Kommentar, wenn dieser nicht den Richtlinien entspricht.

Kommentar Freigeben

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

Freigabe entfernen

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

copyright

Dieser Beitrag ist urheberrechtlich geschützt. Sie wollen ihn für Ihre Zwecke verwenden? Infos finden Sie unter www.mycontentfactory.de (ID: 44715120 / Forschung&Entwicklung)