Suchen

Nanotechnologie Neues Ätzverfahren erzeugt dreidimensionale Mikrostrukturen

Redakteur: Marc Platthaus

Ein neuartiges Ätzverfahren erzeugt dreidimensionale Mikrostrukturen in Silizium, die für die Verarbeitung von Lichtsignalen in der Telekommunikation eingesetzt werden können. Forscher aus Berlin, Louvain und vom Karlsruher Institut für Technologie (KIT) erzeugen so photonische Kristalle, deren optische Eigenschaften sich durch mikrometergroße Strukturen einstellen lassen.

Firmen zum Thema

Tief unter die Siliziumoberfläche hat das SPRIE-Verfahren regelmäßige Strukturen im Mikrometerbereich erzeugt, an denen sich Licht brechen kann.
Tief unter die Siliziumoberfläche hat das SPRIE-Verfahren regelmäßige Strukturen im Mikrometerbereich erzeugt, an denen sich Licht brechen kann.
(Bild: KIT / CFN)

Karlsruhe – „Durch gezielte Strukturierung lassen sich die optischen Eigenschaften von Materialien ganz entscheidend beeinflussen“, erklärt Andreas Frölich vom Karlsruher Institut für Technologie. Silizium wird schon heute in der Telekommunikation in Bauteilen wie Filtern oder Umlenkern verwendet. Alle diese Bauteile sind jedoch bisher im wesentlich flach, also zweidimensional. Mit dreidimensionalen Bauteilen ließen sich jedoch ganz neuartige Konzepte realisieren. Dem Silizium, die dafür notwendige Struktur aufzuprägen, ist aber sehr aufwendig. Sie muss in allen drei Raumrichtungen regelmäßig sein und Details aufweisen, die mit rund einem Mikrometer Größe etwa einem Hundertstel der Dicke eines Haares entsprechen.

Ätzen und Selbstorganisation von Mikrostrukturen

„Unser neues Fertigungsverfahren Sprie nutzt bewährte Technologie wie das Ätzen, innovative Verfahren wie Selbstorganisation und kombiniert diese auf kreative Weise“, freut sich Martin Wegener, Professor am Institut für Angewandte Physik und Institut für Nanotechnologie des KIT und Koordinator des DFG-Center for Functional Nanostructures (CFN). Das Sprie-Verfahren (Sequential Passivation and Reactive Ion Etching)strukturiert einfach, großflächig und dreidimensional Silizium. Zunächst wird auf der Siliziumoberfläche eine Lösung mit mikrometergroßen Kugeln aus Polystyren gegeben.

Nach dem Trocknen ordnen diese sich selbst zu einer dichten, einlagigen Kugelschicht auf dem Silizium an. Nach einer Metallbeschichtung und dem Entfernen der Kugeln bleibt eine wabenförmige Ätzmaske auf der Siliziumoberfläche zurück.

„Diese Ätzmaske ist unsere zweidimensionale Schablone für die Konstruktion der dreidimensionalen Struktur“, sagt Frölich. Die freiliegenden Bereiche werden durch ein reaktives Plasmagas weggeätzt. Ob die Gasteilchen dabei überwiegend nur in die Tiefe oder gleichmäßig in alle Richtungen ätzen, lässt sich mit einem elektrischen Feld beeinflussen. „Zusätzlich können wir die Wände des Loches gezielt passivieren, also mit einer Polymerschicht vor weiterem Ätzen schützen.“

Ätzschritt erzeugt kugelförmige Vertiefung mit gewölbter Oberfläche

Durch wiederholtes Ätzen und Passivieren wachsen die Löcher der Ätzmaske in die Tiefe. Mit bis zu 10 µm sind sie mehr als zehnmal so tief, wie sie breit sind. Stimmt man sehr genau die beiden Prozessschritte und das elektrische Feld aufeinander ab, kann man die Struktur der Wände steuern. Statt eines einfachen Loches mit senkrechten, glatten Wänden, erzeugt jeder Ätzschritt eine kugelförmige Vertiefung mit gewölbter Oberfläche. Diese Wölbung ist der Baustein für die regelmäßigen, sich wiederholenden Strukturen bei neuartigen Lichtwellenleitern. „Optische Telekommunikation findet bei einer Wellenlänge von 1,5 Mikrometern statt. Deshalb erzeugen wir mit unserem Ätzverfahren entlang der Wand eine Riffelung, die ebenfalls im Mikrometerbereich liegt.“ Das Feld an dicht nebeneinanderliegenden und sehr tiefen, strukturierten Löchern wirkt in seiner Summe wie ein regelmäßiger Kristall, an dem Licht auf die gewünschte Art gebrochen wird.

Mikrostruktur innerhalb von Minuten hergestellt

Das Verfahren kann innerhalb von wenigen Minuten einen dreidimensionalen photonischen Kristall erzeugen, da es auf Prozesse zurückgreift, die heute schon in der Industrie üblich sind. Im Prinzip lässt sich damit aus einer frei wählbaren Maske eine dreidimensionale Struktur in Silizium erzeugen. Dies eröffnet neue Möglichkeiten, die an optische Bauteile gestellten Anforderungen in der Telekommunikation zu lösen.

Photonische Kristalle gibt es in verschiedensten Ausführungen. Je nach Bauart werden sie beispielsweise als Wellenleiter mit sehr kleinen Kurvenradien bei geringen Verlusten oder als extrem schmalbandige optische Filter und Multiplexer eingesetzt. In einigen Jahrzehnten wären vielleicht sogar Computer denkbar, die mit Licht statt Strom arbeiten. Neben dem KIT waren an der Entwicklung auch die belgische Université catholique de Louvain und die Humboldt Universität zu Berlin beteiligt.

Literatur: http://onlinelibrary.wiley.com/journal/10.1002/%28ISSN%291616-3028

(ID:35983910)